Skip to main content

Posts

Showing posts from October, 2019

Hypothesis Testing and Correlation Analysis

The director of manufacturing at a cookies needs to determine whether a new machine is production a particular type of cookies according to the manufacturer's specifications, which indicate that cookies should have a mean of 70 and standard deviation of 3.5 pounds. A sample pf 49 of cookies reveals a sample mean breaking strength of 69.1 pounds. A.  State the null and alternative hypothesis   Ho = u>=  70  and alt hypo. Ho = u<70 B.  Is there evidence that the machine is nor meeting the manufacturer's specifications for average strength? Use a 0.05 level of significance .  since the data is random sample size the data seem almost approximate normal.  C.  Compute the p value and interpret its meaning?  (xbar - mu) / (stdsqrt(n)) = (69.1 - 70)/(3.5/sqrt(49)) =  -1.80 this indicted it does not fall under the region and it is rejected.  D.   What would be your answer in (B) if the standard deviation were specified...

Confidence Interval Estimation And introduction to Fundamental of hypothesis testing

1. x̄ = 85 and σ = 8, and n = 64, set up a 95% confidence interval estimate of the population mean μ.  Z= 1-(0.05/2) = 1.96 Sample mean= x-bar = 85 Z*s/sqrt(n) = (1.96*8)/sqrt(64) = 1.96 CI= 85 – 1.96= 83.04 CI= 85- 1.96= 86.96 (83.04, 86.96) 2. If  x̄ = 125, σ = 24 and n = 36, set up a 99% confidence interval estimate of the population mean μ.  Z= 1- (0.01/2) = 0.995= 2.57 Z*s/sqrt(n) = 125 - (2.57*8/sqrt(36) = 3.42-125= 121.58 Z*s/sqrt(n) = 125 + (2.57*8/sqrt(36) = 3.42+125= 128.42 3. The manager of a supply store wants to estimate the actual amount of paint contained in 1-gallon cans purchased from a nationally known manufacturer. It is known from the manufacturer's specification sheet that standard deviation of the amount of paint is equal to 0.02 gallon. A Random sample of 50 cans is selected and the sample mean amount of paint per 1 gallon is 0.99 gallon.  3a. Set up a 99% confidence inter...