Skip to main content

Probability Theory

A. Based on Table 1 What is the probability of:
BB1
A1020
A12040
A1. Event A
A2. Event B?
A3. Event A or B
A4. P(A or B) = P(A) + P(B)
B. Applying Bayes' Theorem 
Jane is getting married tomorrow, at an outdoor ceremony in the desert. In recent years, it has rained only 5 days each year. Unfortunately, the weatherman has predicted rain for tomorrow. When it actually rains, the weatherman correctly forecasts rain 90% of the time. When it doesn't rain, he incorrectly forecasts rain 10% of the time.
What is the probability that it will rain on the day of Jane's wedding? 
Solution: The sample space is defined by two mutually-exclusive events - it rains or it does not rain. Additionally, a third event occurs when the weatherman predicts rain. Notation for these events appears below.
Event A1. It rains on Jane's wedding.
Event A2. It does not rain on Marie's wedding.
Event B. The weatherman predicts rain.

In terms of probabilities, we know the following:
P( A1 ) = 5/365 =0.0136985 [It rains 5 days out of the year.]
P( A2 ) = 360/365 = 0.9863014 [It does not rain 360 days out of the year.]
P( B | A1 ) = 0.9 [When it rains, the weatherman predicts rain 90% of the time.]
P( B | A2 ) = 0.1 [When it does not rain, the weatherman predicts rain 10% of the time.]
We want to know P( A1 | B ), the probability it will rain on the day of Marie's wedding, given a forecast for rain by the weatherman. The answer can be determined from Bayes' theorem, as shown below.
P( A1 | B ) = P( A1 ) P( B | A1 )
P( A1 ) P( B | A1 ) + P( A2 ) P( B | A2 )
P( A1 | B ) = (0.014)(0.9) / [ (0.014)(0.9) + (0.986)(0.1) ]
P( A1 | B ) = 0.111
Note the somewhat unintuitive result. Even when the weatherman predicts rain, it only rains only about 11% of the time. Despite the weatherman's gloomy prediction, there is a good chance that Marie will not get rained on at her wedding.

B1. Is this answer True or False. 
False 
B2. Please explain why?
According to probability definition or theory, when the probability of an event is equal to 1 or near to 1 , it means the event is certain to occur. and from Bayes theorem the chance of it raining is likely to happen on Marie wedding day. 









Comments

Popular posts from this blog

Information Architecture: High Fidelity Design

 For my Group  Project we had to create a low fidelity and high fidelity website design that focus on education and student as well as parents or those involves in education.     

Time Series

Time Series in R Using the data set Tampa weather to create a time series function.  R CODE: ##create data for the rainfall rain2015 <- c(-3,41,33,6,14.6,28.2,21.4,1.81,15.60,0.52,2.90) rain1995 <- c( 0 ,60, 46,16,21.2, 32.6, 26.9, 3.66, 24.20, 0.93, 5.60) ##storing time series and printint it out rrain2015 <- ts(rain2015, ) rrain1995<- ts(rain1995) rrain1995  rrain2015 ##set up time series for the year of rain fall rain2015.timeseries <- ts(rain2015,start = c(2015,1),frequency = 12) ##print the year for rainfall 2015 print(rain2015.timeseries) ##plot the rain fall for 2015 year plot.ts(rrain2015) plot.ts(rain2015.timeseries) lograin2015 <- log(rain2015) plot.ts(lograin2015) #plot multiple time series combined.rainfall <-  matrix(c(rain1995,rain2015),nrow = 12) rainfall.timeseries <- ts(combined.rainfall,start = c(2015,1),frequency = 12) print(rainfall.timeseries) ...

Confidence Interval Estimation And introduction to Fundamental of hypothesis testing

1. x̄ = 85 and σ = 8, and n = 64, set up a 95% confidence interval estimate of the population mean μ.  Z= 1-(0.05/2) = 1.96 Sample mean= x-bar = 85 Z*s/sqrt(n) = (1.96*8)/sqrt(64) = 1.96 CI= 85 – 1.96= 83.04 CI= 85- 1.96= 86.96 (83.04, 86.96) 2. If  x̄ = 125, σ = 24 and n = 36, set up a 99% confidence interval estimate of the population mean μ.  Z= 1- (0.01/2) = 0.995= 2.57 Z*s/sqrt(n) = 125 - (2.57*8/sqrt(36) = 3.42-125= 121.58 Z*s/sqrt(n) = 125 + (2.57*8/sqrt(36) = 3.42+125= 128.42 3. The manager of a supply store wants to estimate the actual amount of paint contained in 1-gallon cans purchased from a nationally known manufacturer. It is known from the manufacturer's specification sheet that standard deviation of the amount of paint is equal to 0.02 gallon. A Random sample of 50 cans is selected and the sample mean amount of paint per 1 gallon is 0.99 gallon.  3a. Set up a 99% confidence inter...